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The Poisson bracket in classical mechanics arises from the existence of a 
natural one-form on a cotangent bundle. The Schouten concomitant of two 
symmetric contravariant tensor fields is closely related to the Poisson 
bracket. We show that it arises in an analogous way from a natural one- 
cochain, where the chains are chains of derivations from the module of 
symmetric contravariant tensor fields into itself. 

1. I N T R O D U C T I O N  

In classical mechanics,  the phase space o f  a dynamica l  system is the 
co tangent  bundle  T * M  of  its conf igurat ion mani fo ld  M. The observables  are 
real  C | funct ions on T ' M ,  and fo rm an associat ive commuta t ive  a lgebra  
F ( T * M )  under  pointwise mul t ip l ica t ion.  By using the na tura l  t - fo rm 0 on 
T * M  ( A b r a h a m  and Marsden ,  1967), this a lgebra  can also be furnished with 
a Lie p roduc t  called the Poisson bracket ,  

{f ,  g} = dO(X s, X~), f ,  g ~ F ( T * M )  

where Xf = (df)# is the Hami l t on i an  vector  field generated by f .  
The a lgebra  F ( T * M )  has a graded  subalgebra  Fo(T*M)  which consists 

o f  funct ions which are po lynomia l  in momen tum.  To obta in  this, we restrict  
the  coord ina te  char ts  on T * M  to be o f  the form (ql  . . . .  , q" ,P l  . . . .  ,Pn), 
where the q* are coord ina tes  on M and the p, are the componen t s  of  the 
covector  p~ dq ~ referred to the basis dq* of  the cotangent  p lane at  q. The 
elements of  Fo(T*M)  are then po lynomia l s  in the p~, 

S~I"'%(q )P~lPi2 " " . p~ 

with coefficients which are componen t s  o f  C ~ symmetr ic  con t ravar ian t  
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tensor fields on M. The grade of an element is its degree in p. This filtration of 
Fo(T*M) is coordinate independent for the charts as restricted above. 

In some formulations of quantization, only the elements of Fo(T*M) 
are assumed to correspond to quantum mechanical observables. It  is then 
convenient to work not directly with Fo(T*M) but with the isomorphic 
algebra ~4 of symmetric contravariant tensor fields on M. Here the pointwise 
associative commutative product, the Poisson bracket, and the grading of 
Fo(T*M) are replaced by, respectively, the symmetrized tensor product, the 
Schouten concomitant, and the tensor valence. We give details in Section 2. 
When working with d one need not mention T*M but may concentrate on 
the geometrical properties of the configuration manifold M itself. 

Now for F(T*M),  it is an important mathematical fact that the existence 
of the Poisson bracket is due to the existence of the natural l-form 0 on T*M. 
I t  may be helpful, therefore, in understanding the structure of the Schouten 
concomitant, to trace explicitly this 1-form through the isomorphism between 
Fo(T*M) and d .  That is the objective of  the present note. We begin with the 
associative commutative algebra do of symmetric contravariant tensor fields 
on M furnished with the symmetrized tensor product. Unlike Fo(T*M), this 
algebra is not an algebra of functions on a manifold and so we cannot set 
up homology chains involving vector fields. Instead we must use derivations 
of d0, as described by Hermann (1973). We then show that 9xr 0 possesses a 
natural coderivation or 1-cochain 0, which maps derivations on do into sJo. 
This cochain has a nondegenerate exterior derivative dO, which we use to 
associate with each element of  y/o the "Hamil tonian derivation" which it 
generates. We then define the Schouten concomitant using 0 in exactly the 
same way as the Poisson bracket is defined using 0. 

2. T H E  S C H O U T E N  C O N C O M I T A N T  

Let T~=~M be the linear space of real fully symmetric contravariant C ~ 
tensor fields S On M, with valence v(S) = s. Let ql . . . .  , qn P l , . . . ,  Pn be local 
coordinates of  T * M  as described in the introduction. Denote by C(S) the 
homogeneous function of degree v(S) in the p's,  

C(S) = Sq..A(q)p~lp~2 . . " P~s 

The Schouten concomitant (Sommers, 1973) [S, T] is an element of T(~>M 
where r = v(S) + v(T) - 1, related to the Poisson bracket by 

{C(S), C(T)) = - C([S, T]) 

In terms of components, 

[S, T]  ~1"''~s+~-1 = sSr~i~'"~=-lOr T~8"''i=+~-I) - tT~(q'";'t-~S ~c''~+=-~ (2.1) 
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where bracketed suffices are symmetrized and ~ r -  ~/~3q ~. The direct sum 
. 2 / =  @g=o T (m>M is a Lie algebra with respect to the Schouten concomitant. 
The map S ~ C(S)  gives a homomorphism ~r -+ F ( T * M ) .  Ordinary multi- 
plication in F ( T * M )  is imaged in zer by the symmetrized outer product 
S n T ~ T (s + t~M, 

C(S)C(T)  = C(S n T)  

(S n T)~1"'%+~ = S(q'"~Ti~+l"'%+~ ) 

Denote by ~ the linear space d furnished with n multiplication, under 
which it is an associative commutative algebra. We shall construct the 
Schouten concomitant from a natural one-cochain O on ar by direct analogy 
with the construction of the Poisson bracket from 0. 

Following Hermann (1973) we set up a cochain complex on ~r a s  
follows. Let ~ (do )  be the zgo module of derivations from J o  to do. An 
r-cochain f is an antisymmetric do-multilinear map of ~(~'0)X. �9 �9 X~(sr 
(r times) into do. Let F d M  ) be the do module of r-cochains. Define, for S ~ s~r 
D ~ ~(do) ,  the one-cochain dS by (dS, D) = DS. 

F o r f ~  F~(M), define d f ~ F ~ + i ( M )  by 

r + l  

d f ( D ~ . . .  Dr+~) = ~ ( -  1)~+iD~f(D1 ' ' "  b ~ " "  Dr+z) 
i = 1  

+ s (-1)~+~C([D,, Dj], D1- ' -  D , . . .  D , . . .  D,+a) 
i~<i<j~<r+l  

Here b~ means that D~ is omitted. It follows that oval = 0. We shall first 
obtain 0 by working in one coordinate patch of M with coordinates q ~ . . . .  , q' ,  
and then give a coordinate-free definition. Denote the local vector fields on 
M by e~ = 8/~q ~. Then 

C(eO = p~ 

Let D be a derivation on ar Derivations on ~o are completely defined by 
their values on the elements q~ and e~. Define the associated vector field XD 
on T * M  by 

XD(C(S)) = C(DS)  

and define the one-cochain 0 on ~r by 

C((O, D))  = (0, XD) (2.2) 

Now 0 = p~ dq ~, so 

(0, XD) = p~(dq ~, XD> = p,XD(q ~) 

= C(e,)C(Dq*) = C(e~ n Dq*) 

= C((e~ Jq~, D))  
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Hence by (2.2), 
O = e~ dq~ (2.3) 

It  may help the understanding of the action of O if we write 

D q i =  S(~ ) (2.4) 

where Sg ) ~ ~r has the form 

S~ ) = @ S(~)~d2""*,~(q)e,~ n . . . n  e~ (2.5) 
r e = c o  

Then 

(O, D }  = e, n Dq ~ 

= @ S}~)'l'2"'"m(q)e, n e~l n . . .  n e,,~ 
m = o 9  

For example, any vector field X ~ T(I>M provides a derivation on do, 
namely, the Lie derivative Dx. We have 

D x q  ~ = X*, (5, Dx}  = e, n X* = X 

The analogous analysis in T * M  is that X lifts to a vector field )7 on T ' M ,  
and (0,)7} = p~X* = C ( X ) .  

We may describe the action of 0 in a coordinate-free way as follows. Let 
e T(~ then from (2.4) and (2.5) 

Dcp = cp,~Dq ~ = ( @  S(A)~l""!m(q)% n .  . . n  e~,~)(e~o) = SDcp 

so that D determines the element 

of  do  | T(1)M. Then we obtain (0, D} by symmetrizing SD so as to lie in 
d o n T(Z)M, and so in do. 

From equation (3) we have 

d O =  de~ A dq' 

dO(D1, D2) = (D~e~) n (D2q')  - (D2e~) (~ (D~q') 

I t  is easy to verify that dO is nonsingular. For if for all derivations D2, 

JO(Dz, D2) = 0 

then taking D2q ~ -- 3k ~, D2e~ = O, we obtain 

Dl(ek) = 0 

and taking D2q ~ = O, D2e~ = 8k, we obtain 

D l ( q  ~) = 0 
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Hence D1 vanishes and dO is nonsingular. To each S ~ ~r we may now define 
a Hamiltonian derivation Ds by the requirement that for all D e ~@(d0), 

D S  = dO(Ds, D)  

= (Dse~) c~ (Dq i) - (De~) n (Dsq ~) 

Taking first D q  ~ = 3k ~, De~ = 0 we obtain 

Dsek = D S  = S~1""~Lkeii n .  . �9 (3 ei, 

and then taking Dq ~ = O, De~ = 8~ k, we obtain 

- D s q  k = D S  = s S ~ ' " % l ~ e ~  n .  . . n  e~,_~ 

Hence 

(0, D s )  = s S  

and we obtain for the Schouten concomitant 

[S, T] = dO(Ds, Dr)  

= -Siz" ' iL~ei~ n �9 �9 .neis  n t T h ' " h - ~ e  h (~ . .  �9 n e]~_~ 

+ Tix'"t*,keil ( ~ . . .  (h eif'~ sSh'"&-~ey~ ( 3 . . .  (~ cA_ ~ 

which agrees with equation (2.1). 
We conclude by posing a problem. In a thorough-going formulation of 

quantum mechanics based only on the algebra of observables, the underlying 
concept of a C * configuration space would be superfluous. One might 
develop a quantum mechanics based on any suitable associative commutative 
algebra of "position operators." This consideration, together with the fore- 
going analysis, suggests that the following problem merits investigation. Let d 
be an associative commutative algebra and let D ( A )  be its Lie algebra of 
derivations. The symmetric algebra ~0 = S ( A  @ ~(A)) is  an associative 
commutative algebra rather like do, so we denote the product operation by n .  
Now we can impose a Lie product structure on ~% which is like the Schouten 
concomitant on do by taking the semidirect product rules of A @ ~ ( A ) ,  

namely, 

[al,  a2] = 0, [Ol, a~] = D~a~, [D~, De] = D~D2 - D2D~, 

a~ ~ A, D~ ~ -@(A) 

and extending them to Yo by distributivity, 

[&, s~ n &] = IS.  &] n & + s~ n IS.  &], s, e ~o 

The problem is: when can we construct this Lie product from a natural one- 
cochain on 5eo ? 
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